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DERIVATION OF Hk+1 GIVEN ACCELEROMETER MEASUREMENTS

The full state of the system Xk is of the form

Xk = blkdiag{θk, ωk, αk}, .
θk = blkdiag{θ1k, ..., θmk },
ωk = blkdiag{ω1

k, ..., ω
m
k },

αk = blkdiag{α1
k, ..., α

m
k } ,

where subscript k denotes time instant, θik is position of the i-th joint, ωik is velocity of the i-th joint, αik is acceleration of
the i-th joint, and m is the number of joints of a body. Measurement Jacobian Hk+1 relating the accelerometer measurement
and joint l is given as [

Hlk+1

1

]
=

∂Ks,R0

∂X l
k+1|k

(
p̈k+1|k + g

)
+Ks,R0

∂p̈k+1|k

∂X l
k+1|k

, (1)

where Ki,Rj stands for the rotational component of the forward kinematics between the i-th and j-th joints (alternatively
0 represents origin, and s denotes sensor), p̈k+1|k represents an acceleration of the sensor s represented in the base frame
and given in homogeneous coordinates, while g is the gravity vector in homogeneous coordinates. The subscript k + 1|k
denotes prediction at time instant k + 1 given the measurement up to and including time instant k. In order to evaluate (1)
we need to compute partial derivatives of Ks,R0 and p̈k+1|k with respect to position, velocity, and acceleration of the full
system state for joint l, i.e., X l

k+1|k.

A. Positional part

Here we consider the evaluation of Hlk+1 with respect to position θlk+1|k. We start by evaluating the partial derivative of
forward kinematics Ks,R0 with respect to the positional variable θl,rk+1|k, where r relates to the r-th generator, r = 1, .., dl,
with dl being the number of degrees of freedom of joint l. This evaluates to

∂Ks,R0

∂θl,rk+1|k

= Kl,R0 θl,rk+1|kE
rKs,Rl , (2)

where El,r represents the r-th generator of a Lie group representing the l-th joint. The evaluation of the partial derivative
of acceleration p̈k+1|k with respect to the positional variable θl,rk+1|k evaluates to
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where

Si,ωk+1|k =

di∑
r=1

(
ωi,rk+1|kE

i,r
)
, (4)

which is a function of the number of degrees of freedom di of the i-th joint, and the superscript ω denotes that the velocity
components are summed up. The three parts in (3) arise from evaluating partial derivatives of the three components existing
in equation (27) of the original manuscript, i.e., the two centripetal components and the joint acceleration component.
Depending on the location within kinematic chain of the considered joint l, different terms need to be applied. However, this
is still a direct result of evaluating partial derivatives of (27) of the original manuscript. The complete positional component
can now be calculated as [

Hθ,l,rk+1

1

]
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)
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. (5)

B. Velocity part

Since Ks,R0 is only a function of the joint position θlk+1|k, the partial derivative of forward kinematics with respect to the
velocity component is

∂Ks,R0

∂ωl,rk+1|k

= 0 . (6)

We now evaluate the partial derivative of acceleration p̈k+1|k, with respect to the velocity variable ωl,rk+1|k, which evaluates
to the following expression
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The four parts of this derivative arise from the two centripetal force components (two per each) given in equation (27) of
the original manuscript. The complete velocity component can now be calculated as[

Hω,l,rk+1

1

]
=
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)
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. (8)

C. Acceleration part

Here, we evaluate the acceleration term. Since Ks,R0 is only function of the joint position θlk+1|k, the partial derivative of
forward kinematics with respect to the acceleration component is

∂Ks,R0

∂αl,rk+1|k

= 0 . (9)

The partial derivative of acceleration p̈k+1|k with respect to the r-th component of the acceleration of the l-th joint, αl,rk+1|k,
evaluates as
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=K0
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This derivative arise from the joint acceleration component given in equation (27) of the original manuscript. The complete
acceleration component can now be calculated as[
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Finally, the full Hk+1 relating sensor measurement and the system variables associated to m joints is constructed as

Hlk+1 =
[
Hθ,lk+1 Hω,lk+1 Hα,lk+1

]
. (12)


