

Dražen Brščić

University of Rijeka, Faculty of Engineering http://www.riteh.uniri.hr/~dbrscic/

People Tracking for Enabling Human-Robot Interaction in Large Public Spaces

This work was largely done at ATR
 Intelligent Robotics and Communication Laboratory
 Kyoto, Japan
 (1/2011 - 9/2016)

- Motivation: bring social service robots into our everyday environments
- However, robots still have limited sensing abilities
- Solution: use sensors installed in the environment

Our previous solution

- Using multiple <u>laser</u> range finders
- Stable and quite accurate tracking can be achieved
- Issues:
 - sensitive to occlusion
 - only 2D position information (no height, orientation, etc.)

3D range sensors

 Measure the distance to the objects – 3D shape of the objects can be obtained

Sensing principle	Scan area	Robustness to noise, interference	Price range	Examples
Stereo camera	Few meters	××	Mid	BumbleBee
Projection	Few meters	×	Low	Kinect, Asus XTION
TOF camera	Few meters	×	Mid	D-IMager, SwissRanger
Rotating 3D laser scanner	Tens of meters	0	High	Velodyne

Examples of sensor outputs

Microsoft Kinect (experimental room)

Panasonic D-IMager (public space)

Basic pose estimation method

- Simple heuristic:
 - Division into layers and extraction of features
 - Robust to noise,
 missing data and
 low resolution
- Continuous tracking using PF

Tracking in a room

 Motion tracker data as ground truth and comparison with LRF (using CLEAR MOT metrics*)

Number of persons :		2	4	8
LRF	Precision [mm]	95.17	116.79	124.79
	Accuracy [%]	99.83	99.55	97.76
3D	Precision [mm]	74.48	82.50	73.60
	Accuracy [%]	99.94	99.97	99.88

^{*} from B. Keni, S. Rainer, EURASIP Journal on Image and Video Processing, vol. 2008

Installation in shopping mall [2012]

Combination of different sensors

47 range sensors: 4 m above ground, on ceiling and pillars

2 Velodyne rotating laser scanners: 8 m height – for covering the square

ATC sensing environment

- Corridors / square 900m² area
- Simultaneous tracking of up to 200 persons

Tracking in ATC

Only accuracy (no ground truth)

Day of week:	Weekday	Weekend	Combine d
Accuracy [%]	98.63	93.21	94.47

→ Comparable to state of the art RGB camera based tracking, while being robust to environment and lighting changes

- Large area continuous real-time tracking
- Collection of statistics and modelling people's behavior

 Enabled us to do experiments in the real world which were previously difficult

Statistic – usage of space

Statistic – changes during the day

Example: corridor data

- Much more persons on weekend than during the week + walking slower
- Workers rush-hours on weekdays

D. Brščić, T. Kanda, *Changes in usage of an indoor public space: analysis of one year of person tracking*, IEEE Transactions on Human-Machine Systems, Vol. 45, No. 2, pp. 228-237, 2015

Pedestrian behavior

- Also <u>microscopic</u> behavior of pedestrians:
 - Improved social-force model of pedestrian movement
 - Analysis of pedestrian groups and recognition
 - Effects of density, gender, age, etc. on group formation

Human-robot interaction

Distribution of flyers:

C. Shi, M. Shiomi, C. Smith, T. Kanda, H. Ishiguro, *A model of distributional handing interaction for a mobile robot*, Robotics: Science and Systems Conference (RSS), pp. 24-28, 2013

Human-robot interaction

Approaching people in need of information:

D. Brščić, T. Ikeda, T. Kanda, *Do you need help? A robot providing information to people who behave atypically*, IEEE Transactions on Robotics, Vol. 33, No. 2, pp. 500-506, 2017

Human-robot interaction

ASIMO as shopkeeper (Miraikan, Oct. 2013)

- Requirement for large and expensive installation
 - Low mobility
 - Limitation where and when can be used

→ Use onboard sensors instead

Onboard sensing

Velodyne HDL-32E

Sensing:

- map built beforehand (using Slam6D package)
- particle filter based 3D localization
- tracking of all objects that are not in the map

Onboard sensing

